1. Fig. 8 shows parts of the curves y = f(x) and y = g(x), where $f(x) = \tan x$ and $g(x) = 1 + f(x - \frac{1}{4}\pi)$.

i. Describe a sequence of two transformations which maps the curve y = f(x) to the curve y = g(x).

It can be shown that $g(x) = \frac{2 \sin x}{\sin x + \cos x}$.

- ii. Show that $g'(x) = \frac{2}{(\sin x + \cos x)^2}$. Hence verify that the gradient of y = g(x) at the point $(\frac{1}{4}\pi, 1)_{is}$ the same as that of y = f(x) at the origin.
 - [7]

iii. By writing $\tan x = \frac{\sin x}{\cos x}$ and using the substitution $u = \cos x$, show that $\int_{0}^{\frac{1}{4}\pi} f(x) dx = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{u} du.$

Evaluate this integral exactly.

[4]

iv. Hence find the exact area of the region enclosed by the curve y = g(x), the x-axis and the lines $x = \frac{1}{4}\pi$ and $x = \frac{1}{2}\pi$.

[2]

$$\int \frac{x}{\sqrt[3]{2x-1}} dx \text{ to } \frac{1}{4} \int \left(u^{\frac{2}{3}} + u^{-\frac{1}{3}} \right) du$$

Show that the substitution u = 2x - 1 transforms

Hence find the exact area of the region enclosed by the curve $y^3 = \frac{x^3}{2x - 1}$, the xaxis and the lines x = 1 and x = 4.5.

[8]

[1]

[9]

dinate to 3 significant figures.

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x^3 - 3x^2}{3y^2(2x - 1)^2}$ Show that

Write down the value of a.

Fig. 9

Evaluate $\int_0^3 x(x+1)^{-\frac{1}{2}} dx$, giving your answer as an exact fraction.

З.

point P.

i.

ii.

iii.

[5]

[5]

 $\frac{\sin 2x}{+\cos 2x} dx = \frac{1}{2} \ln 2$

Using a suitable substitution or otherwise, show that J

Fig. 8

i. Show algebraically that f(x) is an odd function. Interpret this result geometrically.

ii. Show that
$$f'(x) = \frac{2}{(2+x^2)^{\frac{3}{2}}}$$
. Hence find the exact gradient of the curve at the origin.

iii. Find the exact area of the region bounded by the curve, the x-axis and the line x = 1.

[4]

[5]

[3]

iv.

A. Show that if
$$y = \frac{x}{\sqrt{2+x^2}}$$
, $\frac{1}{y^2} = \frac{2}{x^2} + 1$.

B. Differentiate
$$\frac{1}{y^2} = \frac{2}{x^2} + 1$$
 implicitly to show that $\frac{dy}{dx} = \frac{2y^3}{x^3}$. Explain why this expression cannot be used to

find the gradient of the curve at the origin.

[4]

4.

6. Fig. 9 shows the curve y = f(x), where

$$f(x) = (e^x - 2)^2 - 1, x \in \mathbb{R}.$$

The curve crosses the *x*-axis at O and P, and has a turning point at Q.

- i. Find the exact *x*-coordinate of P.
- ii. Show that the *x*-coordinate of Q is ln 2 and find its *y*-coordinate.

iii. Find the exact area of the region enclosed by the curve and the *x*-axis.

[5]

[2]

[4]

The domain of f(x) is now restricted to $x \ge \ln 2$.

iv. Find the inverse function $f^{-1}(x)$. Write down its domain and range, and sketch its graph on the copy of Fig. 9.

Integration by Substitution

[4]

Find
$$\int \sqrt[3]{2x-1} dx$$

7.

8. Fig. 8 shows the curve $y = \frac{x}{\sqrt{x+4}}$ and the line x = 5. The curve has an asymptote l.

The tangent to the curve at the origin O crosses the line l at P and the line x = 5 at Q.

- i. Show that for this curve $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+8}{2(x+4)^{\frac{3}{2}}}$
- ii. Find the coordinates of the point P.

[4]

[5]

iii. Using integration by substitution, find the exact area of the region enclosed by the curve, the tangent OQ and the line x = 5.

[9]

9.

Evaluate $\int_{0}^{1} \frac{1}{1+\sqrt{x}} dx$, giving your answer in the form $a + b \ln c$, where a, b and c are [6] integers.

[7]

[2]

[2]

Find $\int 18x(3x+1)^7 \mathrm{d}x.$

You may wish to use the substitution $u = (3x + 1)$.	[6]
---	-----

- 11. A curve has equation y = f(x), where $f(x) = x^3 e^{-x^2}$.
 - (i) Show that f(x) is an odd function, and interpret this result in terms of the graph of the curve y = f(x). [3]
 - (ii) Find the coordinates of the stationary points of the curve. Give answers correct to 2 decimal places where appropriate.
 - (iii) Sketch the curve for $-2 \le x \le 2$.
 - (iv) (A) Show, using the substitution $t = x^2$, that $\int f(x) dx$ may be expressed as $\int kt e^{-t} dt$, where k is a constant to be determined.

(B) Hence find the exact area of the region enclosed by the curve y = f(x), the positive x-axis and the line x = 2. [4]

12.

10.

Use the substitution u = x + 1 to find $\int (5x+2)\sqrt{x+1} dx$. $kx(x+1)^p + c$ where k, p and c are constants. [7]

13.

(a) $\int \left(\frac{x}{1+\sqrt{x}}\right) dx$. You may use the substitution $u = 1 + \sqrt{x}$. [7]

(b) Hence show that
$$\int_{0}^{1} \left(\frac{x}{1 + \sqrt{x}} \right) dx = A - \ln B$$
 where A and B are constants to be determined. [2]

END OF QUESTION paper

Question		Answer/Indicative content	Marks	Part marks and guidance		
1	i	translation in the <i>x</i> -direction	M1	allow 'shift', 'move'	If just vectors given withhold one 'A' mark only	
	i	of $\pi/4$ to the right	A1	oe (eg using vector)	'Translate $\begin{pmatrix} \pi/4 \\ 1 \end{pmatrix}$ ' is 4 marks; if this is followed by an additional incorrect transformation, SC M1M1A1A0	
	i	translation in <i>y</i> –direction	M1	allow 'shift', 'move'	$\begin{pmatrix} \pi/4\\ 1 \end{pmatrix}$ only is M2A1A0	
	i	of 1 unit up.	A1	oe (eg using vector)		
				Examiner's Comments		
				We usually insist on the word 'translation' here, but in this case allowed 'move', 'shift', etc. A vector on its own does not in our view imply a translation. Occasionally, candidates clearly knew what the transformations were, but wrote the vectors incorrectly, for example the wrong way up. Nevertheless, this topic is usually well known and done well.		
	ii	$g(x) = \frac{2\sin x}{\sin x + \cos x}$			(Can deal with num and denom separately)	
	ii	$g'(x) = \frac{(\sin x + \cos x)2\cos x - 2\sin x(\cos x - \sin x)}{(\sin x + \cos x)^2}$	M1	Quotient (or product) rule consistent with their derivs	$\frac{vu'-uv'}{v^2}$; allow one slip, missing brackets	
	ii	$= \frac{2\sin x \cos x + 2\cos^2 x - 2\sin x \cos x + 2\sin^2 x}{(\sin x + \cos x)^2}$ $= \frac{2\cos^2 x + 2\sin^2 x}{(\sin x + \cos x)^2} = \frac{2(\cos^2 x + \sin^2 x)}{(\sin x + \cos x)^2}$	A1	Correct expanded expression (could leave the '2' as a factor)	$\frac{uv'-vu'}{v^2}$	
	ii	$=\frac{2}{\left(\sin x+\cos x\right)^2}*$	A1	NB AG	must take out 2 as a factor or state $sin^2x + cos^2x = 1$	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
ii	When $x = \pi/4$, g' ($\pi/4$) = $2/(1/\sqrt{2} + 1/\sqrt{2})^2$	M1	substituting π/4 into correct deriv	
ii	= 1	A1		
ii	$f'(x) = \sec^2 x$	M1	o.e., e.g. 1/cos ² x	
	f' (0) = sec ² (0) = 1, [so gradient the same here]	A1	Examiner's Comments The quotient rule is generally well known, and errors here usually stemmed from faulty derivatives or poor algebra. Brackets are not optional in an expression like this, and their removal was not always successfully achieved. We also needed evidence of the use of $\cos^2 x + \sin^2 x = 1$, either by its direct quotation or by factoring out the '2' in the numerator. The evaluation of g'(<i>x</i>) was usually correct. With f'(<i>x</i>), some used a quotient rule on sin <i>x</i> /cos <i>x</i> rather than quoting the derivative of tan <i>x</i> = sec ² <i>x</i> ; we also got some occasional 'translation' arguments here which misunderstood the nature of the verification.	
	c 1/√2 1			
	$= \int_{1}^{1/\sqrt{2}} -\frac{1}{u} du$ let $u = \cos x$, $du = -\sin x dx$ when $x = 0$, $u = 1$, when $x = \pi/4$, $u = 1/\sqrt{2}$ $= \int_{1/\sqrt{2}}^{1} \frac{1}{u} du *$	M1	substituting to get $\int -1/u$ (d <i>u</i>)	ignore limits here, condone no d <i>u</i> but not d <i>x</i> allow
	$= \int_{1/\sqrt{2}}^{1} \frac{1}{u} du *$ $= \int_{1/\sqrt{2}}^{1} \frac{1}{u} du *$	A1	NB AG	∫1/u.–du but for A1 must deal correctly with the -ve sign by interchanging limits

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
iii iii	$= \left[\ln u \right]_{1/\sqrt{2}}^{1}$ = ln 1 - ln (1/\sqrt{2})	M1	[ln <i>u</i>]	
	= $\ln 1 - \ln (1/\sqrt{2})$ = $\ln \sqrt{2} = \ln 2^{\frac{1}{2}} \ln 2$	A1	In $\sqrt{2}$, $\frac{1}{2}$ In 2 or $-\ln(1/\sqrt{2})$ Examiner's Comments This was a case where giving the transformed integral proved to be of doubtful value, as many candidates 'lost' the negative sign in their $\int -1/u$ du, and placed the limits the wrong way round. It appears that the idea of swapping limits making the integral negative was not generally understood. The	mark final answer
			evaluation of the given integral with respect to <i>u</i> was more successfully done, though quite a few candidates approximated their final answer.	
iv	Area = area in part (iii) translated up 1 unit.	M1	soi from π/4 added	or
iv	So = ½ ln 2 + 1 × π4 = ½ ln 2 + π/4.	A1cao	oe (as above) Examiner's Comments These marks were gained by candidates who managed to spot the rectangle of area added by the translation upwards of the graph of f(<i>x</i>).	
	Total	17		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
2			Let $u = 1 + x \Rightarrow$ $\int_{0}^{3} x(1+x)^{-1/2} dx = \int_{1}^{4} (u-1)u^{-1/2} du$	M1	$\int (u - 1) u^{-1/2} (d u)^*$	condone no d <i>u</i> , missing	
		:	$\int_{0}^{4} x(1+x) dx = \int_{1}^{4} (u^{1/2} - u^{-1/2}) du$	A1	$\int (u-1)u^{-1/2}(du)^*$ $\int (u^{1/2} - u^{-1/2})(du)$	bracket, ignore limits	
			•1				
			$= \left[\frac{2}{3}u^{3/2} - 2u^{1/2}\right]_{1}^{4}$	A1	$\left[\frac{2}{3}u^{3/2}-2u^{1/2}\right]$ o.e.	e.g. $\left[\frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2}\right]$; ignore limits	
			= (16/3 – 4) – (2/3 – 2)	M1dep	upper–lower dep 1 st M1 and integration	with correct limits e.g. 1, 4 for <i>u</i> or 0, 3 for <i>x</i>	
			$=2\frac{2}{3}$	A1cao	or $2.\dot{6}$ but must be exact	or using $w = (1 + x)^{1/2} \Rightarrow$ $\int \frac{(w^2 - 1)2w}{w} (dw) M1$	
			OR Let $u = x$, $v' = (1 + x)^{-1/2}$	M1		$= \int 2(w^2 - 1)(dw) A1 = \left[\frac{2}{3}w^3 - 2w\right] A1$	
			$\Rightarrow u' = 1, v = 2(1 + x)^{1/2}$	A1		upper–lower with correct limits (<i>w</i> = 1,2) M1	
			$\Rightarrow \int_{0}^{3} x(1+x)^{-1/2} dx = \left[2x(1+x)^{1/2}\right]_{0}^{3} - \int_{0}^{3} 2(1+x)^{1/2} dx$	A1	ignore limits, condone no d <i>x</i>	8/3 A1 cao	
			$= \left[2x(1+x)^{1/2} - \frac{4}{3}(1+x)^{3/2}\right]_{0}^{3}$	A1	ignore limits	*If $\int_{1}^{4} (u-1)u^{-1/2} du$ done by parts:	
			= (2 × 3 × 2 – 4 × 8/3) – (0 – 4/3)			$2u^{1/2} (u - 1) - \int 2u^{1/2} du A1$ [$2u^{1/2} (u - 1) - 4u^{3/2}/3$] A1	

Question	Answer/Indicative content	Marks	Part marks a	and guidance	
	$=2\frac{2}{3}$	A1cao	or 2.6 but must be exact Examiner's Comments Most candidates used integration by substitution, though a significant minority used integration by parts. In general, the former were more successful, with the main difficulty being in expanding $(u - 1)u^{1/2}$ as $u^{1/2} - u^{1/2}$. Some proceeded from here using integration by parts, with mixed success. When parts were used, the most common error was in deriving $v = 2(1 + x)^{-1/2}$.	substituting correct limits M1 8/3 A1cao	
	Total	5		2	

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
3		i	a = ½	B1	allow $x = \frac{1}{2}$ Examiner's Comments Nearly all candidates gained this mark for the asymptote.	
		ii	$y^{3} = \frac{x^{3}}{2x-1}$ $\Rightarrow 3y^{2} \frac{dy}{dx} = \frac{(2x-1)3x^{2} - x^{3} \cdot 2}{(2x-1)^{2}}$	B1 M1 A1	3 <i>y</i> ² d <i>y</i> /d <i>x</i> Quotient (or product) rule consistent with their derivatives; (v du + udv)/v2 M0 correct RHS expression – condone missing bracket	
			$= \frac{6x^3 - 3x^2 - 2x^3}{(2x-1)^2} = \frac{4x^3 - 3x^2}{(2x-1)^2}$ $\Rightarrow \frac{dy}{dx} = \frac{4x^3 - 3x^2}{3y^2(2x-1)^2} *$	A1 A1	NB AG penalise omission of bracket in QR at this stage	
		ii	$dy/dx = 0$ when $4x^3 - 3x^2 = 0$	M1		
		ii	$\Rightarrow x^2(4x-3) = 0, x = 0 \text{ or } \frac{3}{4}$	A1	if in addition $2x - 1 = 0$ giving $x = \frac{1}{2}$, A0	
		ii	$y^3 = (\frac{3}{4})^3 / \frac{1}{2} = 27/32,$	M1	must use $x = \frac{3}{4}$; if (0, 0) given as an additional TP, then A0	
		ii	<i>y</i> = 0.945 (3sf)	A1	can infer M1 from answer in range 0.94 to 0.95 inclusive	
		ii	Additional suggestions $y = \frac{x}{(2x-1)^{1/3}}$ $\Rightarrow \frac{dy}{dx} = \frac{(2x-1)^{1/3} \cdot 1 - x \cdot (1/3)(2x-1)^{-2/3} \cdot 2}{(2x-1)^{2/3}}$	M1 A1	quotient rule or product rule on y – allow one slip correct expression for the derivative	

Question	Answer/Indicative content	Marks	Part marks ar	nd guidance
ii	$=\frac{6x-3-2x}{3(2x-1)^{4/3}}=\frac{4x-3}{3(2x-1)^{4/3}}$	M1 A1	factorising or multiplying top and bottom by (2x – 1) ^{2/3}	
ii	$=\frac{(4x-3)x^2}{3y^2(2x-1)^{2/3}(2x-1)^{4/3}}=\frac{4x^3-3x^2}{3y^2(2x-1)^2}$	A1	establishing equivalence with given answer NB AG	
ii	$y = \left(\frac{x^3}{(2x-1)}\right)^{1/3}$. (2)-2/3	
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{3} \left(\frac{x^3}{(2x-1)} \right)^{-2/3} \frac{(2x-1) \cdot 3x^2 - x^3 \cdot 2}{(2x-1)^2}$			
		M1A1	× $\frac{(2x-1)\cdot 3x^2 - x^3\cdot 2}{(2x-1)^2}$	
ii	$=\frac{1}{3}\frac{4x^3-3x^2}{x^2(2x-1)^{4/3}}=\frac{4x-3}{3(2x-1)^{4/3}}$	A1		
ii	$=\frac{(4x-3)x^2}{3y^2(2x-1)^{2/3}(2x-1)^{4/3}}=\frac{4x^3-3x^2}{3y^2(2x-1)^2}$	A1	establishing equivalence with given answer NB AG	

Question	Answer/Indicative content	Marks	Part marks and guidance	
Question	Answer/Indicative content $y^{3}(2x-1) = x^{3}$ $3y^{2} \frac{dy}{dx}(2x-1) + y^{3} \cdot 2 = 3x^{2}$ $\frac{dy}{dx} = \frac{3x^{2} - 2y^{3}}{3y^{2}(2x-1)}$ $= \frac{3x^{2} - 2x^{3}}{(2x-1)}$ $= \frac{3x^{2}(2x-1) - 2x^{3}}{3y^{2}(2x-1)^{2}} = \frac{6x^{3} - 3x^{2} - 2x^{3}}{3y^{2}(2x-1)^{2}} = \frac{4x^{3} - 3x^{2}}{3y^{2}(2x-1)^{2}}$	Marks B1 M1 A1 A1	Part marks and guidance $d/dx(y^3) = 3y^2(dy/dx)$ product rule on $y^3(2x - 1)$ or $2xy^3$ correct equationsubbing for $2y^3$ NB AG \Box Examiner's CommentsCandidates tended to scoreheavily on this part. Theimplicit differentiation of y^3 was usually correct (albeitintroduced into solutionsbelatedly), and the quotientrule was done well, thoughoccasionally omission ofbrackets was penalised.Those who cube rooted anddifferentiated oftensucceeded in arriving at thegiven derivative. Anotherapproach was to multiplyingacross before differentiatingimplicitly, but with requiredcandidates to substitute fory to deduce the requiredform for the derivative.Finding $x = \frac{9}{4}$ for theturning point from the givenderivative wasstraightforward, but somefailed to find the correct y-coordinate by omitting thenecessary cube root.	
			derivative was straightforward, but some failed to find the correct y- coordinate by omitting the	

Question	Answer/Indicative content	Marks	Part marks and guidance
iii	$u = 2x - 1 \Rightarrow du = 2dx$ $\int \frac{x}{\sqrt[3]{2x - 1}} dx = \int \frac{\frac{1}{2}(u + 1)}{u^{1/3}} \frac{1}{2} du$	M1 M1	$\frac{\frac{1}{2}(u+1)}{u^{1/3}}$ if missing brackets, withhold A1 × ½ du condone missing du here, but withhold A1
iii	$=\frac{1}{4}\int \frac{u+1}{u^{1/3}} du = \frac{1}{4}\int (u^{2/3} + u^{-1/3}) du *$	A1	NB AG
	area = $\int_{1}^{4.5} \frac{x}{\sqrt[3]{2x-1}} dx$	M1	correct integral and limits – may be inferred from a change of limits and their attempt to integrate (their) $\frac{1}{4}(u^{2/3} + u^{-1/3})$
iii	when <i>x</i> = 1, <i>u</i> = 1, when <i>x</i> = 4.5, <i>u</i> = 8	A1	u = 1, 8 (or substituting back to x's and using 1 and 4.5)
iii	$=\frac{1}{4}\int_{1}^{8}(u^{2/3}+u^{-1/3})\mathrm{d}u$		
	$=\frac{1}{4}\int_{1}^{8} (u^{2/3} + u^{-1/3}) du$ $=\frac{1}{4}\left[\frac{3}{5}u^{5/3} + \frac{3}{2}u^{2/3}\right]_{1}^{8}$	B1	$\left[\frac{3}{5}u^{5/3} + \frac{3}{2}u^{2/3}\right] \text{ o.e. e.g. } \left[u^{5/3}/(5/3) + u^{2/3}/(2/3)\right]$
	$=\frac{1}{4}\left[\frac{96}{5}+6-\frac{3}{5}-\frac{3}{2}\right]$	A1	o.e. correct expression (may be inferred from a correct final answer)

Question	Answer/Indicative content	Marks	Part marks and guidance
Question	Answer/Indicative content = $5\frac{31}{40} = 5.775 \text{ or } \frac{231}{40}$	Marks A1	cao, must be exact; mark final answer Examiner's Comments There were plenty of accessible marks here as well. The first three marks, for transforming the integral to the variable <i>u</i> , were usually negotiated successfully, although poor notation – omitting d <i>u</i> 's or brackets – was sometimes penalised in the A1 mark. The second half involved evaluating the given integral with the correct limits. Some calculated the correct limits, but made errors in the integral (or forgot to integrate altogether). However, a reasonable number of candidates managed to do this work
			without errors. A rather curious misconception was to cube the correct value of the integral, because the function was presented implicitly in terms of y^3 .
	Total	18	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
4			$\int_{0}^{\pi/2} \frac{\sin 2x}{3 + \cos 2x} \mathrm{d}x = \left[-\frac{1}{2} \ln(3 + \cos 2x) \right]_{0}^{\pi/2}$	M1	$k \ln(3 + \cos 2x)$	
				A2	½ ln(3 + cos 2 <i>x</i>)	
			or $u = 3 + \cos 2x$, $du = -2\sin 2x dx$	M1	o.e. e.g. $du/dx = -2\sin 2x$ or if $v = \cos 2x$, $dv = -2\sin 2x dx$ o.e. condone $2\sin 2x dx$	
			$\int_{0}^{\pi/2} \frac{\sin 2x}{3 + \cos 2x} \mathrm{d}x = \int_{4}^{2} -\frac{1}{2u} \mathrm{d}u$	A1	$\int -\frac{1}{2u} \mathrm{d}u, \text{ or if } v = \cos 2x, \int -\frac{1}{2(3+v)} \mathrm{d}v$	
			$=\left[-\frac{1}{2}\ln u\right]_{4}^{2}$			
			$= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4$			
			$= \frac{1}{2} \ln (\frac{4}{2})$			
			$= \frac{1}{2} \ln 2 *$			
				A1	$[-\frac{1}{2} \ln u]$ or $[-\frac{1}{2} \ln(3 + v)]$ ignore incorrect limits	
				A1	from correct working o.e. e.g. $-\frac{1}{2} \ln(3 + \cos(2.\pi/2)) + \frac{1}{2} \ln(3 + \cos(2.0))$ o.e. required step for final A1, must have evaluated to 4 and 2 at this stage	
				A1	NB AG	
					□ <u>Examiner's Comments</u>	
					The error d/dx (cos $2x$) = 2sin 2x proved costly here, earning only a consolation M1; many also wrote the limits the wrong way round on the integral, and scored 3 out of 5, unless they 'lost' the negative sign, and scored M1 only. Many candidates seem unaware that swapping limits dealt with the negative sign. We also needed to see some evidence of why ln 4 – ln 2 = 2 to score the final A1.	

Question		n	Answer/Indicative content	Marks	Part marks and guidance	
			Total	5		

Question		Answer/Indicative content	Marks	Part marks and guidance		
5	i	$\sqrt{2 + (-x)^2}$	M1	substituting $-x$ for x in f (x)	$\frac{-x}{\sqrt{2+-x^2}}, \frac{-x}{\sqrt{2+-(x^2)}}, \frac{-x}{\sqrt{2+(-x^2)}}$ M1A0	
	i	$=-\frac{x}{\sqrt{2+x^2}}=-\mathbf{f}(x)$	A1	1^{st} line must be shown, must have f (- <i>x</i>) = - f (<i>x</i>) oe somewhere	$\frac{-x}{\sqrt{2-x^2}}$ M0A0	
	i	Rotational symmetry of order 2 about O	B1	must have 'rotate' and 'O' and 'order 2 or 180 or ½ turn'	oe e.g. reflections in both <i>x</i> - and <i>y</i> -axes	
				Examiner's Comments		
				Most candidates stated that for an odd function $f(-x) =$ -f(x) or equivalent. It is important when writing $f(-x)$ that brackets are placed round the -x terms: if these were missing, the 'A' mark was lost. The structure of this 'show' was often a bit 'muddy': $f(-x) = = -f(x)$ is clear, but writing $f(-x) = -f(x)$ and then writing expressions for each side of this equation below and showing they are equal is less so, as the direction of the argument, or implications, is not clear. The geometrical description of an odd function required three elements: 'rotational', 'order 2' and 'centre O' or equivalent; reflection in Ox followed by Oy was also allowed.		
	ii	$\mathbf{f}'(x) = \frac{\sqrt{2+x^2} \cdot 1 - x \cdot \frac{1}{2} (2+x^2)^{-1/2} \cdot 2x}{(\sqrt{2+x^2})^2}$ $= \frac{2+x^2-x^2}{(2+x^2)^{3/2}} = \frac{2}{(2+x^2)^{3/2}} *$	M1	quotient or product rule used	QR: condone $udv \pm vdu$, but u , v and denom must be correct	
	ii		M1	½ u ^{-1/2} or – ½ v ^{-3/2} soi		
	ii		A1	correct expression	$x(-1/2)(2 + x^2)^{-3/2} . 2x + (2 + x^2)^{-1/2}.$ = (2 + x ^{-3/2})(-x ² + 2 + x ²)	

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	ii		NBAG		
ii	When $x = 0$, f'(x) = $2/2^{3/2} = 1/\sqrt{2}$	B1	oe e.g. $\sqrt{2/2}$, $2^{-1/2}$, $1/2^{1/2}$, but not $2/2^{3/2}$	allow isw on these seen	
			Examiner's Comments The difficulty with this sort of product or quotient rule question lies in factorising and hence simplifying the expression, and this was the case here. Many wrote down correct expressions, but then failed to eshowf the printed answer. This difficulty often encouraged multiple attempts, sometimes using a quotient rule, followed by a product		
			rule, etc. A surprising number of candidates muddled up their euf and evf and quotient and product rule, for example using $v = (2+x2)-^{1/2}$ in their quotient rule. Often the final answer failed to score because we insisted on this being simplified to $1/\sqrt{2}$ or equivalent.		
iii	$A = \int_0^1 \frac{x}{\sqrt{2+x^2}} [dx]$	B1	correct integral and limits	limits may be inferred from subsequent working, condone no d <i>x</i>	
iii	let $u = 2 + x^2$, $du = 2x dx$		or $v = \sqrt{(2 + x^2)}$, $dv = x(2 + x^2)^{-1/2} dx$		
iii	$=\int_{2}^{3}\frac{1}{2}\frac{1}{\sqrt{u}}\mathrm{d}u$	M1	$\int \frac{1}{2} \frac{1}{\sqrt{u}} [du] \text{ or } = \int l[dv] \text{ or } k(2+x^2)^{1/2}$	condone no d <i>u</i> or d <i>v</i> , but not $\int \frac{1}{2} \frac{1}{\sqrt{u}} dx$	
iii	$= \left[u^{1/2} \right]_2^3$	A1	$[u^{1/2}]$ o.e. (but not $1/u^{-1/2}$) or [v] or $k = 1$		

Qı	uestion	Answer/Indicative content	Marks	Part marks and guidance		
	iii	$=\sqrt{3}-\sqrt{2}$	A1cao	must be exact Examiner's Comments A substantial minority of candidates thought this integral should be done by parts, and therefore scored nothing after the first B1. Those who tried substituting often got muddled before arriving at $\int 1/2\sqrt{u} du$, and some then integrated this incorrectly, e.g as $\ln\sqrt{u}$	isw approximations	
	iv	$y^2 = \frac{x^2}{2 + x^2}$	M1	squaring (correctly)	must show $[\sqrt{(2 + x^2)}]^2 = 2 + x^2$ (o.e.)	
	iv	⇒ $1/y^2 = (2 + x^2)/x^2 = 2/x^2 + 1^*$	A1	or equivalent algebra NB AG Examiner's Comments This simple piece of algebra was often over-complicated by round-the-houses methods. An all- too- commonly seen mistake was $x^2/(2+x^2) = x^2/2 + 1$.	If argued backwards from given result without error, SCB1	
	iv	$-2y^{-3}dy/dx = -4x^{-3}$	B1B1	LHS, RHS	condone d $y/dx - 2y^{-3}$ unless pursued	
	iv	$ \Rightarrow \frac{dy}{dx} = -\frac{4x^{-3}}{-2y^{-3}} = \frac{2y^{-3}}{x^{3*}} = \frac{2y^{-3}}{x^{-3}} = \frac{2y^{-3}}{x^{-3}} = \frac{1}{2} + \frac$	Β1	NB AG		

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
		iv	Not possible to substitute <i>x</i> = 0 and <i>y</i> = 0 into this expression	B1	soi (e.g. mention of 0/0) Examiner's Comments The implicit differentiation was usually correct, as was the algebra to arrive at the printed result. The exact logic behind why $x = 0$ and y = 0 could not be substituted into the result expression was often faulty (for example many stated the result would be zero or infinite); we condoned this provided they stated the idea that division by zero is undefined or not possible.	Condone 'can't substitute $x = 0$ ' o.e. (i.e. need not mention $y = 0$). Condone also 'division by 0 is infinite'
		V	$-2y^{-3}dy/dx = -4x^{-3}$ $\Rightarrow dy/dx = -4x^{-3}/-2y^{-3} = 2y^{3}/x^{3*}$ Not possible to substitute x = 0 and y = 0 into this expression		LHS, RHS NB AG soi (e.g. mention of 0/0)	condone $dy/dx - 2y^{-3}$ unless pursued Condone 'can't substitute $x = 0$ ' o.e. (i.e. need not mention $y = 0$). Condone also 'division by 0 is infinite'
			Total	18		

Qı	uestion	Answer/Indicative content	Marks	Part marks a	nd guidance
6	i	At P, $(e^x - 2)^2 - 1 = 0$			
	i	$\Rightarrow e^{x} - 2 = [\pm]1,$	M1	square rooting – condone no ±	
	i	e ^x = [1 or] 3			
	i	$or (e^{x})^{2} - 4 e^{x} + 3 = 0$	M1	expanding to correct quadratic and solve by factorising or using quadratic formula	condone e^x^2
	i	⇒ $(e^{x} - 1)(e^{x} - 3) = 0, e^{x} = 1$ or 3			
	i	⇒ <i>x</i> = [0 or] ln 3	A1	<i>x</i> -coordinate of P is In 3; must be exact	condone P = In 3, but not <i>y</i> = In 3
				Examiner's Comments	
				Most candidates succeeded in finding $x = \ln 3$, either by square rooting or solving thequadratic in e^x . The second method was somewhat compromised by setting $x = e^x$ (ratherthan a different variable) to get a quadratic in x, though we condoned this for both marks.	
	ii	f' (x) = $2(e^x - 2)e^x$	M1	chain rule	e.g. 2 u × their deriv of e ^x
	ii		A1	correct derivative	2(e ^x – 2) <i>x</i> is M0
	ii	= 0 when e^x = 2, x = ln 2 *	A1	not from wrong working NB AG	or verified by substitution
	ii	$or f(x) = e^{2x} - 4e^x + 3$	M1	expanding to 3 term quadratic with $(e^x)^2$ or e^{2x}	condone e^{x^2}
	ii	$\Rightarrow f'(x) = 2e^{2x} - 4e^x$	A1	correct derivative, not from wrong working	
	ii	= 0 when $2e^{2x} = 4e^{x}$, $e^{x} = 2$, x = ln 2 *	A1	or $2e^{x}(e^{x}-2) = 0 \Rightarrow e^{x} = 2, x$ = ln 2	or verified by substitution
	ii			not from wrong working NB AG	

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	y = f(ln(2)) = -1	B1	Examiner's Comments		
			This provided a simple four marks for most candidates, using a chain rule to find the derivative, setting this to zero and solving to get $x =$ ln 2. A neat alternative method was to recognise that the $(e^x - 2)^2$ term must be non-negative and minimum when $e^x - 2 = 0$, or $x = \ln 2$.		
iii	$\int_{0}^{\ln 3} [(e^{x} - 2)^{2} - 1] dx$ = $\int_{0}^{\ln 3} [(e^{x})^{2} - 4e^{x} + 4 - 1] dx$	M1	expanding brackets must have 3 terms: $(e^x)^2 - 4$ is M0, condone e^x^2	or if $u = e^x$, $\int_{1}^{3} [u^2 - 4u + 4 - 1]/u du$	
iii	$=\int_0^{\ln 3} [e^{2x} - 4e^x + 3] dx$	A1	$\int e^{2x} - 4e^x + 3 [dx]$ (condone no dx)	$= \int u - 4 + 3/u \mathrm{d}u$	
iii	$=\left[\frac{1}{2}e^{2x}-4e^{x}+3x\right]_{0}^{\ln 3}$	B1	$\int e^{2x} = \frac{1}{2} e^{2x}$	= $[\frac{1}{2}u^2 - 4u + 3\ln u$	
iii		A1ft	$[\frac{1}{2}e^{2x} - 4e^{x} + 3x]$		
iii	= (4.5 – 12 + 3ln3) – (0.5 – 4)				
iii	= 3ln3 – 4 [so area = 4 – 3ln3]	A1	condone 3ln3 – 4 as final ans; mark final ans		
			Examiner's Comments		
			This proved to be a rather costly part for candidates unless they recognised the requirement to multiply out $(e^{x} - 2)^{2} - 1$ to get $e^{2x} - 4e^{x}$ + 3 and then integrate term- by-term. Other attempts using substitution or parts usually got nowhere. Although originally we required candidates to give the area as 4 – 3ln3, very few actually did this, so it was decided to condone a (negative) area of 3ln3 – 4.		

Question	Answer/Indicative content	Marks	Part marks and guidance		
iv	$y = (e^x - 2)^2 - 1 \ x \leftrightarrow y$				
iv	$x = (e^{y} - 2)^{2} - 1$				
iv	$\Rightarrow x + 1 = (e^{y} - 2)^{2}$	M1	attempt to solve for <i>y</i> (might be indicated by expanding and then taking lns)	or <i>x</i> if <i>x</i> and <i>y</i> not interchanged yet or adding (or subtracting) 1	
iv	$\Rightarrow \pm \sqrt{(x+1)} = ey - 2 (+ \text{ for } y \ge \ln 2)$	A1	condone no ±		
iv	\Rightarrow 2 + $\sqrt{(x + 1)} = e^{y}$				
iv	$\Rightarrow y = \ln(2 + \sqrt{(x+1)}) = f^{-1}(x)$	A1	must have interchanged <i>x</i> and <i>y</i> in final ans		
iv	Domain is $x \ge -1$	B1	must be \geq and x (not y)	if not specified, assume first ans is domain and second range	
iv	Range is $y \ge \ln 2$	B1	or $f^{-1}(x) \ge \ln 2$, must be \ge (not x or $f(x)$) if $x > -1$ and $y > \ln 2$ SCB1		
iv	(-1,ln2) (ln2,-1)	M1	recognisable attempt to reflect curve, or any part of curve, in <i>y</i> = <i>x</i>	<i>y</i> = <i>x</i> shown indicative but not essential	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
		A1	good shape, cross on $y = x$ (if shown), correct domain and range indicated. [see extra sheet for examples] Examiner's Comments Rather more than half of the candidates managed the inverse function well, though a few made errors at the last stage of taking the square root, and concluded with $y = \ln(\sqrt{(x + 1)}) + 2$, or $y = \ln(\sqrt{(x + 1)}) + 2$, or $y = \ln(\sqrt{(x + 1)}) + \ln 2$. Some were perhaps encouraged by the previous part to multiply out $(e^x - 2)^2$ again, though they could still obtain a method mark for a step towards finding y in terms of x. It was not uncommon to see candidates taking logs of individual terms.	e.g. – 1 and In 2 marked on axes
	Total	18		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
7			let $u = 2x - 1$, $du = 2 dx$	M1	substituting $u = 2x - 1$ in	i.e. $u^{1/3}$ or $\sqrt[3]{u}$ seen in
			$\int \sqrt[3]{2x-1} \mathrm{d}x = \int \frac{1}{2} u^{\frac{1}{3}} \mathrm{d}u$		integral	integral
				M1	× ½ 0.e.	condone no d <i>u</i> , or d <i>x</i> instead of d <i>u</i>
			$=\frac{3}{8}u^{\frac{4}{3}} + c$ $=\frac{3}{8}(2x-1)^{\frac{4}{3}} + c$	M1	integral of u ^{1/3} = u ^{4/3} /(4/3) (oe) soi	not <i>x</i> ^{1/3}
			$=\frac{3}{8}(2x-1)^{\frac{4}{3}}+c$	A1cao	o.e., but must have + <i>c</i> and single fraction mark final answer	so $\frac{3}{4}(2x-1)^{\frac{4}{3}}+c$ is M1M0M1A0
			or			
			$\int \sqrt[3]{2x-1} \mathrm{d}x = \frac{1}{2} \times (2x-1)^{4/3} \div \frac{4}{3}$	M1	$(2x-1)^{4/3}$ seen	e.g. correct power of (2 <i>x</i> – 1)
				M1	÷ 4/3 (oe) soi	e.g. ¾ (2 <i>x</i> – 1) ^{4/3} seen
				M1	× 1/2	
			$=\frac{3}{8}(2x-1)^{\frac{4}{3}}+c$	A1cao	o.e., but must have + <i>c</i> and single fraction mark final ans	so $\frac{3}{8}(2x-1)^{\frac{4}{3}}$ is M1M1M1A0
					Examiner's Comments	
					This question was also answered well, either using substitution or by inspection. However, a surprising number of candidates who substituted left their final answer in terms of u, and a few lost the final mark through omitting the arbitrary constant.	
			Total	4		

Question		Answer/Indicative content	Marks	Part marks and guidance		
8	i	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{(x+4)^{1/2} \cdot 1 - x \cdot \frac{1}{2} (x+4)^{-1/2}}{[(x+4)^{1/2}]^2}$	M1	quotient rule: $v \times$ their $u' - u$ × their v' , and correct denominator	or product rule	
	i		B1	1⁄2 u ^{-1/2} soi	or –½ u ^{-3/2} (PR)	
	i		A1	correct expression	PR: $x(-\frac{1}{2})(x+4)^{-3/2} + (x+4)^{-1/2}$	
	i	$=\frac{x+4-\frac{1}{2}x}{(x+4)^{3/2}}=\frac{\frac{1}{2}x+4}{(x+4)^{3/2}}=\frac{x+8}{2(x+4)^{3/2}}*$	M1	factoring out $(x + 4)^{-1/2}$ o.e.	$= (x+4)^{-3/2} (-\frac{1}{2} x + x + 4)$	
	i		A1	NB AG	Examiner's Comments	
					Most candidates scored well on this question, which covered calculus topics such as the product or quotient rule for differentiation and integration by substitution, which are generally well understood by learners. The first three marks here were usually earned, though a minority of weaker candidates mixed up the product and quotient rules, for example using $v = (x + 4)^{-1/2}$ in their quotient rule. The factorisation required to achieve the given result was less successfully done, but just over half the candidates still managed full marks here. There were a lot of repeated attempts at this, for example using the product rule when they got stuck with manipulating their quotient rule expression.	
	ii	[asymptote is] <i>x</i> = –4	B1	soi	but from correct working	
	ii	gradient of tangent at O= $8/(2 \times 4^{3/2}) = \frac{1}{2}$	B1	gradient = ½		

Questio	n	Answer/Indicative content	Marks B1	Part marks and guidance		
	ii	eqn of tangent is $y = \frac{1}{2}x$		o.e. e.g. using gradient		
	ii	When <i>x</i> = -4, <i>y</i> = -2, so (-4, -2)	B1		Examiner's Comments	
					Most candidates scored well on this question, which covered calculus topics such as the product or quotient rule for differentiation and integration by substitution, which are generally well understood by learners.	
					This proved to be a straightforward 4 marks earned by over 70% of scripts. The asymptote and the gradient and equation of the tangent at the origin were usually correctly found, followed by the coordinates of Q.	
	iii	let $u = x + 4$, $du = dx$	B1	or d <i>x</i> /d <i>u</i> = 1	or $v^2 = x + 4$, $2vdv/dx = 1$ or 2vdv = dx oe e.g. $dv/dx = \frac{1}{2}(x + 4)^{-1/2}$	
	iii	$\int_{0}^{5} \frac{x}{(x+4)^{1/2}} dx = \int_{4}^{9} \frac{u-4}{u^{1/2}} du$ $= \int_{4}^{9} (u^{1/2} - 4u^{-1/2}) du$	B1	$\int \frac{u-4}{u^{1/2}} [\mathrm{d} u]$		
	iii	$= \int_{4}^{9} (u^{1/2} - 4u^{-1/2}) \mathrm{d} u$	B1	$u^{1/2} - 4u^{-1/2}$ or $u^{1/2} - 4/u^{1/2}$, or $\sqrt{u} - 4/\sqrt{u}$	$\int (2v^2 - 8)[dv]$	
	iii	$= \left[\frac{2}{3}u^{3/2} - 8u^{1/2}\right]_{4}^{9}$	B1	$\left[\frac{2}{3}u^{3/2} - 8u^{1/2}\right]$ o.e.		
	iii	= (18 – 24) – (16/3 – 16)	M1	substituting correct limits (upper – lower)	0, 5 for <i>x</i> ; 4,9 for <i>u</i> ; 2,3 for <i>v</i>	
	iii	= 14/3	A1cao			
	iii	or (following first 2 marks)			by parts with no substitution:	
	iii	let $v = u - 4$, $w' = u^{-1/2}$, $v' = 1$, $w = 2u^{1/2}$	M1		$u = x, u' = 1, v' = (x + 4)^{-1/2}, v = 2(x + 4)^{1/2} M1$ = $[2x (x + 4)^{1/2}] - \int 2(x + 4)^{1/2}$ A1	

Ques	stion	Answer/Indicative content	Marks	Part marks a	nd guidance
	iii	$\int_{4}^{9} (u-4)u^{-1/2} \mathrm{d}u = \left[2u^{1/2}(u-4)\right]_{4}^{9} - \int_{4}^{9} 2u^{1/2} \mathrm{d}u$	A1		
	iii	$= \left[2u^{1/2}(u-4) - \frac{4}{3}u^{3/2}\right]_{4}^{9}$	A1		= 14/3 A1 (so max of 4/6)
	iii	= 14/3	A1cao		
	iii	<i>y</i> - coordinate of Q is 2 ¹ / ₂	B1	(soi)	or $\int_0^5 \frac{1}{2} x \mathrm{d} x_{M1}$
	iii	Area of triangle = $\frac{1}{2} \times 5 \times \frac{5}{2} = \frac{25}{4}$	B1		$=\left[\frac{1}{4}x^{2}\right]_{0}^{5}=25/4_{A1}$

Question	Answer/Indicative content	Marks	Part mar	ks and guidance
	Enclosed area = $25/4 - 14/3 = 1\frac{7}{12}$	Β1	or 19/12, or 1.583	isw from correct exact answer Examiner's Comments Most candidates scored well on this question, which covered calculus topics such as the product or quotient rule for differentiation and integration by substitution, which are generally well understood by learners. This 9-mark question required careful extended work from candidates, but there was a pleasing response, with just under half the scripts earning full marks. The first six of these were for finding the area under the function using substitution. Here, as usual, notation sometimes left something to be desired, with missing du's or dx's, integral signs, inconsistent limits, etc. Most of this we condoned, but we did require du/dx = 1 or its equivalent to be stated. The final three marks depended upon the correct coordinates for the point Q being found in part (ii). Occasionally the triangle area was found using $\int \frac{1}{2} x$ dx.
	Total	18		

Question	Answer/Indicative content	Marks	Part marks and guidance
9	let $u = 1 + \sqrt{x} du = \frac{1}{2}x^{-\frac{1}{2}} dx$ $\Rightarrow dx = 2 (u - 1)du$ $\Rightarrow \int_0^1 \frac{1}{1 + \sqrt{x}} dx = \int_1^2 \frac{2(u - 1)}{u} du$	M1(AO3. 1a) A1(AO1. 1) A1(AO1. 1)	substituting $u = 1 + \sqrt{x}$ or $w = \sqrt{x}$ dx = 2(u - 1) 1) du or dx = 2w dw $\frac{2(u - 1)}{u} (du)$ or $\frac{2w}{(w + 1)} (dw)$
	$=\int_{1}^{2}\left(2-\frac{2}{u}\right)\mathrm{d}u$	M1(AO3. 1a)	splitting fraction or dividing to get $2 - \frac{2}{(w+1)}$ (or substituting $u = w + 1 \Rightarrow$ Evidence of method must be seen
	$= [2u - 2\ln u]_{1}^{2}$ = 4 - 2ln 2 - 2 = 2 - 2ln 2 or 2 - ln 4	A1(AO1. 1) A1cao(A O1.1) [6]	$\frac{2(u-1)}{(u)}$ and then splitting fraction) $[2w-2\ln(w+1)]_{0}^{1}$ Qf still in terms of w
	Total	6	

Q	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
10			$\frac{du}{dx} = 3$ substitution of $3x = u - 1$ $\int 2(u - 1)u^7 du$ $\frac{2u^9}{9} - \frac{2u^8}{8}(+c)$ $\frac{2}{9}(3x + 1)^9 - \frac{1}{4}(3x + 1)^8 + c$	B1(AO 1.1) M1(AO 1.1) A1(AO 1.1) A1(AO 1.1) A1(AO 1.1) A1(AO 1.1) [6]	for either term correctly integrated both correct	Other correct methods eg integration by parts, are acceptable	
			Total	6			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
11		i	$f(-x) = (-x)^3 e^{-(-x)^2}$	M1	substituting -x for x in f(x)	at least once	
			$=-x^3e^{-x^2}=-f(x)$	A1	must have $f(-x) = (-x)^3 e^{-(-x)^2}$		
			Rotational symmetry of order two about the origin.	B1	for A1	allow	
				[3]	or point or half-turn (180°) symmetry about O	description of symmetry, e.g. 'fits its outline if rotated etc'	
					Examiner's Co	omments	
					Most candidat or 3 here. We see $f(-x) = (-x)$ the proof that odd function, y brackets correc For the 'B' may the property of we needed to to 'symmetry', 'half-turn, 180 and 'about the	required to $x)^3 \exp(-x)^2$ in f(x) was an with the excly placed. with describing of the graph, see reference a° or order 2',	
		ii	$f'(x) = 3x^2 e^{-x^2} + x^3 (-2x) e^{-x^2}$	M1 A1*	product rule correct	consistent with their derivatives - condone	
			f'(x) = 0 when $3x^2e^{-x^2} - 2x^4e^{-x^2} = 0$	M1	expression	deriv of e^{-x^2} is e^{-x^2} for	
			$\Rightarrow 3x^2 = 2x^4$ $\Rightarrow x = 0, \sqrt{1.5}, -\sqrt{1.5}$	M1	their deriv = 0	M1 must be 2 terms	
			<i>y</i> = 0, 0.41. –0.41 So (0, 0),	A1dep	taking out or dividing by <i>e</i> ^{-x²}	must be 2 terms	
			(1.22, 0.41), (-1.22, -0.41)	A2dep	dep A1*		

Question	Answer/Indicative content	Marks	Part marks and guidance
		[7]	or $x = \pm \sqrt{1.5}$ o.e. dep A1* Allow SC A1 if both x-coords correct or one point correct (dep A1*) Examiner's Comments The main problem with the product rule here was to get the correct derivative of $\exp(-x^2)$. A common mistake was to think this is $\exp(-x^2)$. Having found the correct derivative and equated it to zero, the next issue was dividing through by, or factorising, $\exp(-x^2)$. After this, not many candidates got all three turning points, either omitting the origin or (-1.22, -0.41) or both. Also, evaluating the y -coordinates was sometimes done incorrectly. Where these issues were overcome, half of the candidates scored 6 or over; of these, half scored full marks.

Question	Answer/Indicative content	Marks		Part marks ar	nd guidance
iii	(-1.22, -0.41) (-1.22, -0.41) (-1.22, -0.41)	M1 A1dep	shape for $-2 \le x \le 2$ with 2 TPs, through O, reasonable half turn	need not show stationary inflexion at O. ignore shape outside -2 $\leq x \leq 2$	
		[2]	TPs and stationary inflexion at origin	condone plotting beyond [–2, 2] provided shape is correct	
			Examiner's Cor	mments	
			Very few candid both marks here omitted the infle origin, and the often lacking the symmetry state	e. Many ection at the graphs were e point	
iv	(A) let $t = x^2$, $dt/dx = 2x [\Rightarrow xdx = \frac{1}{2} dt]$ o.e.	M1			
	$\int x^3 e^{-x^2} [dx] = \int x^2 e^{-x^2} x [dx] = \int \frac{1}{2} t e^{-t} [dt]$	A1	k = ½		
		[2]	Examiner's Cor Half the candida these two mark substitution in th was perhaps ur	ates scored s. Using a his context	

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
iv	Answer/indicative content $(B) \int_{0}^{2} x^{3} e^{-x^{2}} dx = k \int_{0}^{4} t e^{-t} dt$ $ et \ u = t, \ v = e^{-t}, \ u' = 1, \ v$ $= -e^{-t}$ $= [k] \left\{ \left[t(-e^{-t}) \right]_{0}^{4} - \int_{0}^{4} (-e^{-t}) dt \right\}$ $= [k] \left\{ \left[-e^{-t} - te^{-t} \right]_{0}^{4} \right\}$	Marks M1 A1 A1	correct parts on $\int te^{-t}[dt]$ or $\int kte^{-t}[dt]$ ignore limits, ft	ft their k , condone v = e^{-t}	nd guidance
	$= -\frac{1}{2}e^{-4} - 2e^{-4} + \frac{1}{2} = \frac{1}{2} - \frac{5}{2e^{4}}$	A1cao	their <i>k</i> limits must be correct here, ft their <i>k</i>		
		[4]	oe but must evaluate e^0 = 1 and combine e^{-4} terms		
			Examiner's Co They could ge the four marks missing, or inc for <i>k</i> , but not n succeeded wit	t three out of with a correct, value nany	
	Total	18			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks ar	nd guidance
12			$\frac{\mathrm{d}u}{\mathrm{d}x} = 1$	B1 (AO 1.1a)	Or d <i>u</i> = d <i>x</i>		
			$\int (5u-3)u^{\frac{1}{2}} du$ $\int \left(5u^{\frac{3}{2}}-3u^{\frac{1}{2}}\right) du$	M1 (AO 1.1) M1 (AO	Complete substitution for <i>x</i> and d <i>x</i>		
			$2u^{\frac{3}{2}} - 2u^{\frac{3}{2}} [+c]$	1.1) M1 (AO 1.1)			
			$2(x+1)^{\frac{5}{2}} - 2(x+1)^{\frac{3}{2}} + c$ $\{2(x+1) - 2\}(x+1)^{\frac{3}{2}} + c$	M1 (AO 1.1)			
			${2(x+1)-2}(x+1)^{\frac{1}{2}}+c$	M1 (AO 1.1)	Taking out factor $(x+1)^{\frac{3}{2}}$		
			$2x(x+1)^{\frac{3}{2}}+c$	A1 (AO 2.1) [7]	Correct answer in correct form		
			Total	7			

Question	Answer/Indicative content	Marks	Part marks and guidance
13 a	$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ $x = (u-1)^{2}$ $\int \frac{(u-1)^{2}}{u} \times 2(u-1) du$ $2\int \left(u^{2} - 3u + 3 - \frac{1}{u}\right) du \text{oe}$ $2\left[\frac{u^{3}}{3} - \frac{3u^{2}}{2} + 3u - \ln u\right]$ $\frac{2(1+\sqrt{x})^{3}}{3} - 3(1+\sqrt{x})^{2} + 6(1+\sqrt{x}) - 2\ln(1+\sqrt{x})}{[+c]}$	B1 (AO1.1) M1 (AO2.1) M1 (AO3.1a) A1 (AO1.1) A1 (AO1.1) A1 (AO3.2a) [7]	allow sign error FT their x and their derivative must be in a form ready to integrate three terms correct allow full marks if + c omitted
b	Evaluation of F[1] – F[0] $\frac{5}{3}$ – in 4	M1 (AO2.1) A1 (AO1.1) [2]	
	Total	9	